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REVIEW ARTICLE 

Liquid-crystal phases of self-assembled molecular aggregates 
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I Depamnent of Chemistry. Brandeis Univenity. Wallham, MA 02254, USA 
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Abstract. A variety of molecules revenibly self-assemble in solution. forming noncovalently 
bonded molecular aggregates. In many cases these aggregales are asymmetric in shape and are 
observed to form liquid-crystal phases. The nature of and mechanisms for liquidcrystalline 
ordering in such self-assembled systems is the focus of lhis review. 
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1. Introduction 

In certain respects, the lyotropic ordering of molecules in solution is easier to understand 
than the thermotropic ordering of molecules in neat fluids. This is because the interactions 
between particles responsible for ordering in concentrated solutions need only be described 
relative to the interactions of the particles with solvent. As a result, explicit consideration 
of van der Waals attractions is unnecessary and repulsions between electrically neutral 
particles can be approximated in most cases by hard-core potentials. For length scales large 
compared to the characteristic length for solvent structure, the solvent can be considered as 
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a continuum background. The description of a lyotropic system is thus similar to that of a 
hard-particle fluid [ 1-31, 

This simple picture of particle interactions is fortunate because there is a large class 
of important lyotropic liquid crystals for which complications arise at another level. Thess 
are systems in which the particles are labile and highly polydisperse because they are 
formed by the open-ended, reversible aggregation of molecules. For example, amphiphilic 
polyaromatic molecules can reversibly associate to form cylindrical stacks of variable length 
[a]. Analogously, rigid surfactant molecules can reversibly associate to form disc-like 
aggregates of variable diameter [6-9]. More generally, surfactants can form extended 
micelles of both rod-like and disc-like geometry [10-16]. Among larger molecules, the so- 
called polymerizing proteins reversibly assemble into multistranded filaments [17]. These 
filaments give structure to living cells, and their assembly and disassembly is a vital part 
of cell growth and cell motion [181. 

Reversible assembly introduces new degrees of freedom into the system. In addition 
to the usual spatial degrees of freedom for rotational and translational ordering, the self- 
assembling systems have molecular degrees of freedom corresponding to the distribution 
of aggregate shapes and sizes. All of these degrees of freedom are coupled to each 
other: steric interactions between particles of various sizes and shapes are responsible for 
spatial ordering and spatial ordering alters the relative stabilities (i.e. the thermodynamic 
activities) of particles of different sizes and shapes. Any theory of reversibly assembling 
lyotropic liquid crystals must take these reciprocal effects into account and consider the 
joint optimization of all degrees of freedom. 

In this review we first discuss the theory of liquid-crystalline ordering in simple 
monodisperse lyotropic systems (section 2) and the process of aggregate self-assembly 
in ideal-solution conditions (section 3). We then proceed to develop a general theoretical 
approach for the description of liquid-crystalline ordering in systems of self-assembled 
molecular aggregates. In section 4 we present descriptions of orientational ordering in 
surfactant and protein systems. In section 5 we present descriptions of positional ordering 
for systems that have been designed to form only rods or discs. In section 6 we consider 
the strengths and limitations of the present theory. with an assessment of future directions. 

2 Entropically driven ordering 

As discussed above, the formation of liquid-crystalline phases in lyotropic systems can, to 
a good approximation, be considered a purely entropic process. This statement implies that 
the long-range order in liquid crystals, much like the short-range order in simple fluids, 
can be attributed to hard-core interparticle interactions. Onsager was the first to show 
that an isotropic-nematic transition is possible in a system of asymmetric hard particles 
[I]. The mechanism for this entropically driven orientanonal ordering is a competition 
between rotational and translational degrees of freedom. Onsager’s result suggests an 
analogous mechanism for entropically driven positional ordering in hard-palticle fluids. We 
have proposed that positionally ordered phases, such as the smectic and columnar, may be 
stabilized by a trade-off in translational entropy between the three dimensions of the system. 
A simple cell model has been developed that displays such entropically driven positional 
ordering [191. In this section we briefly sketch the Onsager model for entropically driven 
orientational ordering and our cell model for entropically driven translational ordering. 
Finally we note that only recently have computer simulation studies been camed out that 
convincingly demonstrate the existence of both orientational and translational ordering in 
systems of asymmetric hard particles. 
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2.1. Onsager model for orienfafional ordering 

The possibility of liquid-crystal ordering in a system of hard particles was first investigated 
by Onsager, who demonstrated that in a fluid of long rigid hard rods the disordered or 
isotropic phase, stable at low densities, becomes unstable above a critical density with 
respect to an orientationally ordered or nematic phase [I]. The Onsager calculation employs 
a second virial expansion of the free energy and thus is only valid in the dilute limit. 
However, since the critical transition density is proportional to the inverse square of the 
rod length, the isotropic-nematic transition is described exactly for very long rods. In 
addition to this exact limiting result, the calculation also provides an intuitive explanation 
for orientational ordering in a hard-particle fluid. The origin of the ordering transition lies 
in a competition between rotational and translational entropy: upon alignment, the system 
loses rotational entropy (i.e. becomes orientationally ordered); however, this loss is more 
than compensated by a gain in translational entropy in the aligned phase (due to a decrease 
in the particle pair excluded volume). 

Here we give a brief synopsis of the Onsager calculation. Consider a fluid of N 
hard uniaxial monodisperse rods in a volume V .  The degree of orientational order in 
this fluid is specified by the angular distribution function h(S2). normalized such that 
Sh(Q2) dQ = I ,  and N h ( Q )  dQ gives the number of rods with orientations in the solid 
angle range Q + Q + dQ. The Helmholtz free energy F per rod, which is a functional of 
h(Q),can be written as a sum of ideal mixing and excess configurational contributions (in 
units of ~ B T  = I/p) as follows: 

pF[h(Q)]/N = f idea' + f""". (2.1) 

The ideal contribution is given by 

fide" = In(pA3) - 1 + / h(Q) In[4nh(C2)1 dQ (2.2) 

where p = N /  V is the number density of rods and A is a constant arising from the single- 
particle partition function. This free-energy contribution favours an isotropic distribution 
of rods where h(Q) = I / 4 n ,  in which case equation (2.2) reduces to the free energy of 
an ideal gas. The excess contribution to the free energy is considerably more difficult to 
calculate as it involves a 3N-dimensional configurational integral. Onsager approximated 
this hard-rod excess configurational free energy using the second vinal estimate 

h(Q)h(Q')be"(S1, Q') dQ dQ' 
= 2 s s 

where he'(Q, Q') is the excluded volume between a pair of rods with orientations S2 and 
Q'. (The pair excluded volume is the volume excluded to the centre of one particle by the 
presence of a second particle.) The exact form of b"(Q, 52') depends on the geometry of 
the hard rods considered. For spherocylinders of diameter D and cylinder length L (particle 
volume bo = &D3 + arrD2L) the pair excluded volume is 

hex(Q,  a') = 8h0 + 2DL21 sin(S2 -a')\. (2.4) 

This pair excluded volume is at a minimum for parallel rods (51 - Q' = 0) and thus the 
excess free energy of equation (2.3) favours an orientationally ordered phase. Minimization 
of the Helmholtz free-energy functional (equation (2.1)) with respect to h(s l ) ,  subject to the 
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normalization constraint on h(R), leads to a non-linear integral equation for the equilibrium 
orientation distribution function. Numerical solution of this equation shows that, with 
increasing density, the globally stable state switches from the isotropic to the nematic at p 
= 4.55/(DL2) and a first-order orientational ordering transition occurs in the hard-rod fluid 
[U)]. This result is exact in the limit of p + 0, PDL* > 0. 

While the Onsager theory provides an intuitive understanding of entropically driven 
orientational ordering, this second vinal approach is not quantitatively accurate for 
moderately asymmetric particles (for example, rods with L I D  < 50) [21], and thus a theory 
that takes account of higher-order vinal terms is required. An altemative approach, taken by 
Flory and DiManio, is the use of a lattice model, which reduces the calculation of the excess 
free energy to a combinatorics problem [22,23]. We will discuss these types of models in 
section 4.2. Another approach for describing hard-particle fluids, which is both simple and 
accurate, is provided by scaled particle theory [24,25]. The scaled particle calculation only 
requires the panicle pair excluded volume as input and reduces to the Onsager result in 
the low-density limit. We make use of scaled particle theory in sections 4.3 and 5 of this 
review. 

M P Taylor and J Henfeld 

2.2. Cell model for positional ordering 

The possibility of translationally ordered fluid phases in hard-particle systems has been, until 
quite recently, an open question. The fact that orientational ordering in hard-panicle fluids 
can be understood in terms of a trade-off between rotational and translational entropy led us 
to surmise that translational order in such fluids may be stabilized by trade-offs between the 
three translational degrees of freedom. Starting from this intuitive idea we have developed 
a simple model for translationally ordered fluid phases in hard-particle systems [19]. In 
this model the periodic spatial distribution that characterizes these phases is imposed by the 
introduction of impenetmble cell boundaries. This enables us to separate the statistics for the 
translationally ordered dimensions of the system from the disordered or fluid dimensions. 
The ordered and disordered dimensions of the system remain coupled to each other through 
the effect that the spacing of the cell boundaries has on the entropy in each dimension. Here 
we outline the model in the context of a fluid of parallel hard spherocylinders for which 
recent computer simulation results are available [26,271. 

We consider a fluid of N hard spherocylinders with axial ratio L j D ,  which are 
constrained to be parallel in a fixed volume 1’. In this system we consider the possibility 
of four distinct phases: the nematic phase, which is translationally disordered, and the 
smectic, columnar and crystal phases, which are translationally ordered. The periodic 
density modulations that define these ordered phases are created by dividing the system 
into appropriate types of cells with impenetrable boundaries. In the smectic phase, these 
boundaries are uniformly spaced parallel planes, which divide the system into layers such 
that the particles can freely interact with other panicles in a layer, but interact only with 
the cell wall in the dimension perpendicular to the layer. In the columnar phase, space is 
divided into an array of tubes such that panicles arc free to move along the length of the 
tubes but may not penetrate into adjacent tubes. Finally in the crystalline phase, particles 
are individually confined to closed cells such that a particle interacts only with its cell 
walls on all sides. These artificial boundaries in essence divide space into separable ordered 
and disordered dimensions. In the (3-d) ordend dimensions, each particle is alone in a 
(3 -d)-dimensional box and the centre of the panicle has a well defined set of allowed 
positions that keep the particle in the box. In the d disordered dimensions, the positions of 
the centres of the panicles are constrained only by hard-core (excluded-volume) interactions 
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with other particles in the same cell and the behaviour is that of a ddimensional fluid of 
d-dimensional hard particles. 

This separation of disordered (fluid) and ordered (cell) dimensions enables us to 
consmct a Helmholtz free energy of the following form: 

where is the excess free energy per particle of the appropriate ddimensional fluid and 
f;:! is the excess free energy of complementary (3 - d)-dimensional particles in (3 - d)- 
dimensional cells. The nematic, smectic. columnar and crystal phases are specified in 
equation (2.5) by the labels d = 3, 2, 1, 0 respectively and fpd, f:" 0. The excess 
fluid and cell contributions to the free energy are coupled in both the smectic and columnar 
phases through their mutual dependence on the smectic layer spacing and the columnar 
tube width, respectively. We use d-dimensional scaled particle theory [24] to evaluate f , '  
and a self-consistent free-volume cell model [28] to evaluate fc:. By computing the free 
energy of equation (2.5) for each of the four phases as a function of density and axial 
ratio, a number of phase transitions can be located in this system. The resulting p versus 
LID phase diagram displays regions of nematic, smectic, columnar and crystalline stability. 
This calculated phase diagram for parallel hard sphemcylinders is in general agreement with 
computer simulation results [26,27]. In section 5 we make use of this cell model to describe 
translational ordering in self-assembling systems. 

3. The self-assembly process 

3.1. Phenomenologicai descripfion 

A variety of molecules reversibly self-associate in solution to form structured molecular 
aggregates. The size distribution of these aggregates is generally very broad and the number 
of individual molecules or monomers comprising a distinct aggregate can range from two 
up to several thousand This aggregation or association process is most commonly driven 
by the hydrophobic effect and the free energy of association per monomer is generally of the 
order of several ~ B T  [ 11,291. Thus the aggregates are actually in dynamic equilibrium with 
free monomers. The microscopic details of the association process are complex and vary 
from system to system. For example, in the case of micellar surfactants, free energies of 
self-assembly depend upon interactions between hydrophilic head-groups, solvation effects 
and the packing of the hydrophobic chains [ 12,13,30]. Noting that such microscopic details 
are primarily functions of temperature and local aggregate geometry (e.g. surface curvature), 
we make use of a simple phenomenological model for aggregate assembly that is generally 
applicable to a variety of systems [31,32]. 

In this phenomenological approach we assume that the free energy arising from 
interactions between monomen in an aggregate is a function only of temperature and the 
local aggregate geometry and is independent of the individual aggregate size and the overall 
solute concentration. In the simplest case of linear aggregation, where aggregates comprise 
stacks of monomers, we introduce a single temperaturedependent parameter - $ ( T ) ~ B T  as 
the average free energy of association per monomermonomer contact in such an aggregate. 
The free energy of association for a linear aggregate composed of n monomers (an n-mer) is 
thus - (n - l)$(T)ksT. For a more general case of aggregation where monomers can form 
spherical, rod-like and disc-like aggregates (as in many micellar systems), we introduce 
a different phenomenological parameter for each local aggregate geometry. Assuming a 
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model in which all possible aggregate shapes can be divided into spherical, cylindrical 
and planar regions, we define the corresponding average free energies p a  monomer of 
intra-aggregate interactions in each of these regions as -@o(T)ksT, -@,(T)ksT and 
-Qz(T)ksT. respectively7 

3.2. Ideal-solution behaviour 

Here it is instructive to consider the simple case of linearly self-assembling aggregates in the 
absence of inter-aggregate interactions (i.e. in ideal-solution conditions). This example will 
both demonstrate the above model for aggregate assembly and enable us to introduce some 
necessary formalism. In section 2.1 we introduced the orientational distribution function 
h(S2), which described the orientational order in a system of monodisperse rods. In the 
analogous self-assembling system of rod-like aggregates we have a polydisperse distribution 
of rcds and thus require a distribution function that accounts for both aggregate size and 
orientation. For this purpose we define the number concentmtion of n-mers in the orientation 
range Q + Q + dQ as c,(Q). This distribution function is constrained by the requirement 
that the total volume fraction of solute, given by 

M P Taylor and J Herdeld 

where bl is the volume of a monomer, be fixed. In the absence of inter-aggregate 
interactions, the Helmholtz free energy is simply given by the sum of an ideal mixing 
and an association contribution as follows: 

pF'd'"'[c"(s2)]/v = f"" + f""' (3.2) 

where 
00 

fmiX =E/ dS2 cn(Q){ln[4nh3cn(Q)] - 1) 
"=I 

(3.3) 

and 

fa''= = -g/ dS2 c,(Q)(n - 1)4. (3.4) 

The constant A in equation (3.3) refers to single-particle properties of the monomeri Note 
that equations (3.2H3.4) are given in terms of free energy per unit volume (i.e. freeenergy 
density), which, for these self-assembling systems, is more convenient than the free energy 
per particle. The ideal mixing contribution to the free energy favours a large number of small 
aggregates while the association contribution favours a small number of large aggregates. 
This competition will lead to a well defined equilibrium size distribution of aggregates. 

t These energies are equivalent to Ihe 'standard' chemical powtials PI monomer generally used in describing 
micelleassembly: @n = ( # - f i ~ p k i c ) / k ~ T . '  01 = (,Gy-j&)/kBT, 02 = ( f i ~ - & J / k ~ T ,  where 6:. P~pkz. 
iL and are the 'standard' chemical polentiah of a monomer in dilute solution. and in a spherical. rod-like 
or plate-like micellar region respectively (see e.g. 1321). 
t McMullen eI 01 1331 w e  hat the single-panicle pmperiies of aggregales. rather than monomers, should be 
mnsidered in models of micellar systems. In this case lhe factor A in equation (3.3) is a function of agmgation 
number n and Ihe ideal-solution size distribution is no longer a simple exponential BS in equation (3.7). 
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The equilibrium distribution is determined by minimizing the free-energy functional with 
respect to the aggregate size and orientation distribution function as given by the following 
extremum condition: 

(3.5) 

where x is a Lagrange multiplier conjugate to the constraint of a fixed solute volume 
fraction. This minimization equation immediately leads to the following condition of 
multiple equilibria between distinct aggregate species, which characterizes reversibly self- 
assembling systems [34]: 

where Bpn(Q) is the chemical potential of an a-oriented n-mer and the chemical potential 
of the unaggregated monomeric species is simply Bp1(Q) = -bl,y. Application of this 
extremum condition to the free-energy functional of equation (3.2) leads to the following 
orientationally isotropic equilibrium distribution function: 

c,,(Q) = q(Q) exp[-(n - I)(blX -@)I = (e-@/4rA3)(l - I/@))" (3.7) 

where (n) is the average aggregation number given by 

(3.8) 

For strong aggregation equation (3.8) reduces to the well known form (n)  - (uPe@)'fl. 
The function given in equation (3.7). known in polymer statistics as the 'most probable 
distribution' [35], is an exponentially decreasing function of aggregate size. For such a 
distribution, polydispersity increases with increasing (n) and the average aggregate size 
increases monotonically with both increasing concentration (v,) and increasing association 
free energy (4). 

An analogous ideal-solution distribution function can readily be computed for micellar 
systems. In micellar systems, cooperative monomer association first occurs at the critical 
micelle concentration (cMC), which is the lowest concenhation at which 'minimum' 
aggregates are thermodynamically stable [1&13]. These minimum aggregates are usually 
spherical in shape and composed of a nearly fixed number of monomers. With increasing 
concentration these minimum aggregates can grow into rod-like andor disc-like micelles. 
For a rod-like micellar system we can describe the aggregate size and orientation distribution 
as above through a uniaxial number density c.(St), where an aggregation number of n = 
1 corresponds to unaggregated monomer, n = no corresponds to minimum aggregates 
and n z no corresponds to rod-like aggregates. Here we assume that there are no stable 
aggregates in the range 1 < n e no. It is convenient to model a rod-like aggregate as 
a spherocylindrical n-mer such that no monomers comprise the two hemispherical end- 
caps and the remaining (n - no) monomers make up the cylindrical body. Defining the 
average free energy of association per monomer in the spherical and the cylindrical regions 
as -@o(T)ksT and - @ , ( T ) b T ,  respectively, the total association free energy per unit 
volume for such a rod-like micellar system is given by 
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where am,,, is the usual Kronecker delta function. For the case of no = I the previously 
discussed linear aggregation result (equation (3.4)) is recovered. 

In ideal-solution conditions, the complete Helmholtz &-energy density for the 
micellar rod-like system is given by the sum of equations (3.3) and (3.9). The ideal 
equilibrium size distribution is obtained by functional minimization of this free-energy 
density (equation (3.5)) and depends on the two association parameters 00 and 0,. The 
parameter 00 gives a measure of the stability of the minimum aggregate and is related to the 
mole fraction at the CMC of the system through the approximate relation XCMC - exp( -00). 
In the limit of large 0 0  the minimum aggregate is completely stable and essentially all 
monomers are associated into minimum or larger aggregates. In this case the behaviour of 
the system is completely govemed by the difference 0, - 00 and the system resembles the 
simple linear aggregation system with the minimum aggregate playing the role of 'monomer' 
[31,32,36]. When 0 0  is small compared to 01, assembly is cooperative, with an abrupt 
transition from monomem to long aggregates, with increasing concentration. 

M P Taylor and J Herzfeld 

4. Orientational ordering in surfactant and protein systems 

In the absence of inter-aggregate interactions. there is no driving force for liquid-crystalline 
ordering and thus the self-assembled system remains orientationally isotropic. A model 
appropriate for the description of liquid-crystalline ordering in crowded self-assembling 
systems is obtained by adding an excess configurational free-energy contribution to the 
ideal mixing and association contributions accounted for in equation (3.2). i.e. 

For lyotropic systems, the excess free energy is dominated by a hard-core configurational 
contribution f""", and additional soft interactions can be treated as perturbations to the 
hard-core reference. As noted in section 2 there are a number of theoretical approaches 
available for estimating fcon'g. For the self-assembling systems an approach that can be 
generalized to describe polydisperse and possibly polymorphic systems is required. In the 
following, we discuss orientational ordering in a variety of self-assembling systems using 
the free-energy functional of equation (4.1) with three different approaches for calculating 
fmfigP. The resulting aggregate size distributions maintain an exponential form, similar 
to equation (3.7). in both the isotropic phase and in each direction in the orientationally 
ordered phases, where the size distribution varies with orientation. 

4.1. Second virial description 

The second vinal description of a monodisperse hard-rod fluid was outlined in section 2.1. 
This approach can be generalized to describe a polydisperse system of self-assembling rod- 
like aggregates. For example, in the linear and rod-like micellar self-assembling systems 
discussed in section 3.2. the second vinal estimate of the excess configurational free energy 
per unit volume is given by 

where b&,(S'Z, P') is the pairexcluded volume between ann- and an n'-mer in orientations 51 
and a', respectively. Equation (4.2) is the polydisperse generalization of the monodisperse 
result of equation (2.3). 
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This second vinal approach has been utilized by McMullen et a1 to describe orientational 
ordering in a self-assembling system of micellar rod-like aggregates [371. These authors 
model the micellar aggregates as hard spherocylinders, with a minimum aggregation number 
no = 20, and construct a Helmholtz freeenergy functional that is equivalent to equation (4. I), 
with the ideal mixing, association and configurational contributions given by equations (3.3), 
(3.9) and (4.2), respectively (see second footnote in section 3.2). The equilibrium size and 
orientation distribution function is determined via the functional minimization of this free 
energy (equation (3.5)). As the second vinal approach is valid only for dilute conditions, 
these authors limit their study to cases of strong aggregation, for which the isompic-nematic 
transition occurs at low volume fractions. For the aggregation free energies considered, the 
isompionematic transition occurs at a volume fraction ranging from 0.008 to 0.120, with 
the corresponding average aggregate axial ratio ( L I D )  at the isotropic phase boundary 
ranging from 360 to 22. At this transition, a strong coupling between aggregate growth and 
alignment is observed, with the average aggregate size being larger, and the size distribution 
more polydisperse, in the nematic phase, compared with the coexisting isotropic phase. In 
these coexisting phases it is found that the quantity c,(L)*D is nearly constant, being equal 
to 3.7 in the isotropic phase and 5.0 in the nematic phase (where cp is the total number 
density of aggregates). 

The second vinal approach of McMullen et al is expected to be quantitatively accurate 
in the dilute regime. However, micellar systems and many self-assembling protein systems 
generally form liquid-crystalline phases at volume fractions exceeding 10% [38-43,171. To 
address these systems we require an approximation for the configurational free energy that 
remains accurate (and mathematically tractable) beyond the dilute regime. To this end, we 
pursue both a lattice model and a scaled particle theory approximation in the following 
sections. 

4.2. Lattice models 
Lattice descriptions of hard-particle fluids are attractive since these models reduce the 
task of evaluating a 3Ndimensional hard-particle configurational integral to a tractable 
combinatorics problem. This is especially advantageous when dealing with a polydisperse 
and heterogeneous population of particles such as that found in a self-assembled micellar 
solution. The price to be paid for this simplified approach is the lattice discretization of 
particle positions and orientations. Various approaches have been suggested for overcoming 
these limitations. For example, Flory's lattice model attempts to overcome the discrete 
orientation limitation by breaking particles up into segments and arranging the segments 
in staggered configurations to approximate particle orientations not parallel to the lattice 
directions [221. On the other hand Herzfeld's lattice model [44,45], which is a generalization 
of DiMarzio's model [231, attempts to overcome the discrete position limitation by using an 
underlying lattice that can be refined to a continuum limit. Here we make use of Herzfeld's 
model, which is especially suited for populations of particles that are polydisperse in width 
as well as length. While this model restricts particle orientations, we demonstrate at the 
end of this section that, for self-assembling systems, this approximation is not as severe as 
it appears 1461. 

We first address the simple linear aggregation system [47] discussed in section 3.2 We 
consider a polydisperse collection of self-assembling rod-like aggregates on a simple cubic 
lattice of volume V. The basic aggregating unit or monomer is a cube of edge length 
a (monomer volume hl = a'), n of which can linearly aggregate to form a square rcd 
of dimensions a x a x nu. The system is described in terms of the size and orientation 
distribution function c"(S-2,). which gives the number density of n-aggregates in orientation 
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["I1 I I 
Figure 1. Schematic representation of Ihe various aggrr- 
gate geomeaies considered in ui is revinv. (a)  In lk lat- 
tice systems (section 4.2) cubic monomers self-assemble to 
form cubic minimum aggregates (wiIh minimum aggrega- 
tion number no = w3), uniaxial reclangular rod-like aggrr 
gales and biaxial plate-like agpegates. ( b )  In the linear ag 
gregation rod-like system ( d o n  5.1) spherical monomen 
self-assemble 10 form spherwylindrical d-like aggregates 
and ( E )  in the simple disc-like system (section 5.3) s p  
mehc right cylindrical monomers self-assemble to form 
disc-like aggregates. 

Q;, where Q,, 522, Q3 correspond to the three lattice directions. Equations (3.3) and (3.4) 
are applicable to this system if the integrations over Q are converted to sums over Qi and 
the constant 4nh3 is replaced by e3, where E is the refined lattice mesh spacing. The 
Helmholtz free-energy density in equation (4.1) is here a functional of the discrete size and 
orientation distribution function cn(Qi). The excess configurational free-energy densiry for 
this lattice system is given by the following relatively simple expression: 

(4.3) 

where cp is the total number density of aggregates, a(!&) is the total particle surface area 
per unit volume facing lattice direction Q; and i(Qi) is the total particle length per unit 
volume along lattice direction Qi. Minimization of the complete Helmholtz free-energy 
density (equation (4.1)). for a given aggregation free energy @ and volume fraction up. via 
equation (3.5) yields the equilibrium aggregate size and orientation distribution function. 

The phase diagram resulting from this calculation is shown in figure ;?(a). Assuming 
that the aggregation free energy @ varies inversely with temperature, this figure can be 
interpreted as a temperature-concentration phase diagram. At very low aggregation free 
energies (@ c 5). corresponding to high temperatures, there is insufficient aggregate growth 
to drive the formation of a liquid-crystalline phase. As the strength of aggregation is 
increased, aggregate growth is enhanced and a high concentration nematic phase is observed. 
With further increase in @ (lowering of the temperature) the alignment transition moves to 
lower volume fractions and the coexisting isotropic and nematic phases are separated by 
a relatively broad two-phase region. Finally, at large aggregation free energies (@ > 20) 
aggregation is very strong and highly elongated aggregates form a nematic phase at very 
low concentrations. Details of the average aggregate size are given in figure 2(b) for the 
specific 4 values. At low volume fractions, where the system is orientationally isotropic, 
the average rod length is larger here than in the corresponding ideal-solution case, indicating 
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that the inclusion of excluded-volume effects tends to promote aggregation in the isotropic 
phase [48]. At the isotropionematic transition there is a bifurcation in the average rod 
length between the different lattice directions as rods in the preferred direction grow at the 
expense of rods in the other two directions. A strong aggregate growth-alignment coupling 
is apparent with aggregates in the nematic phase being significantly longer than those in the 
coexisting isotropic phase. 

0 

Nematic 

30 U 

P V 

Figure 2. (U)  Phase diagram for the no = I 
linearly aggregating system and (b)  associated average 
aggregation numbers for non-ideal (-) and ideal 
(----) solution conditions. The tie lines in ( U )  connect 
the coexisting isokopic and nematic phases. The 
symbols in (b) lmare the isotropionemalic phase 
boundaries. 

0.8 

P 
Figure 3. Phase diagrams for the no = 64 micellar 
roc-like system in (a)  the skong and (b)  the weak 
aggregation limits. l i e  lines ~ n n e c f  Ihe mexisting 
isompic and nematic phases and the broken CuNe in (b) 
locates an apparently second-order alignment m i t i o n .  

V 

The linear aggregation process has only one degree of freedom for aggregate growth 
and the resulting phase behaviour is relatively simple. More complex phase behaviour 
can be expected from systems possessing multiple degrees of freedom in the aggregation 
process. For example, in a system of micellar rod-like aggregates we can consider regimes 
of strong, weak and intermediate aggregation strength. In the strong aggregation regime the 
minimum aggregate is very stable and the liquid-crystalline phase behaviour will be very 
similar to the case of simple linear aggregation. However, if the minimum aggregate is 
made progressively less stable, as is appropriate for certain self-assembling protein systems, 
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very different phase behaviour is possible. The second v ina l  treatment of McMullen er ai. 
described in section 4.1, was limited to the strong aggregation regime. Here we use our 
lattice model to study the micellar rod-like system in the strong, weak and intermediate 
aggregation regimes [47]. 

The polydisperse population of particles making up the rod-like micellar system consists 
of monomers, minimum aggregates and rod-like aggregates. In using a lattice model to 
compute the excess configurational free energy of this system, monomers are treated as 
cubes of edge length a, minimum aggregates as cubic assemblies of no monomen with 
dimensions wa x wa x wa (no = w3)  and rod-like aggregates as rectangular rods of 
dimensions wa x wa x la (I w )  (see figure I@)). This calculation is wr ied  out on a 
refined lattice and thus, while the number of monomers comprising an aggregate must be 
an integer, the dimensions w = n;’’ (which is fixed) and I = (n/no)w (which is variable) 
are not required to take on integer values. As above, the size and orientation distribution 
of this self-assembling system is defined in terms of c,(sZ,), the number concentration of 
n-aggregates oriented in lattice direction i. The complete Helmholtz free-energy density 
!or the micellar rod-like system is given by equation (4.1) with the ideal mixing and 
aggregate association conbibutions given by the lattice versions of equations (3.3) and 
(3.9). respectively, and the excess configurational contribution given by equation (4.3). 
For a given pair of aggregation free energies 00 and 01, and volume fraction, up. the 
equilibrium aggregate size and orientation dismbution is given by the extremum condition 
of equation (3.5). 

In figures 3(a) and (6) we show the resulting 01 - 4 0  versus up phase diagrams for 
both the strong and weak aggregation cases. Here we consider a system with a minimum 
aggregation number of no = 64 and a refined lattice spacing of 6 = 1/50, values appropriate 
for the protein sickle-cell haemoglobin (NbS). As expected, the strong aggregation result 
(00 = 24.0) shown in figure 3(a) is very similar to that of the simple linear aggregation 
system shown in figure 2(a) where the ordinates of these two diagrams are roughly related 
by 4 n. no(01 - 00). In contrast, the weak aggregation result (00 = 12.4). shown in 
figure 3(b), is smkingly different. In  this case the minimum aggregate is very unstable and 
the initial formation of aggregates ( i s .  the cMC) is almost coincident with the alignment 
transition! In the phase diagram of figure 3(b) the isotropic phase boundary is nearly 
vertical for large values of 01 - 00 and the two-phase region rapidly natmws as this 
energy difference is decreased. At 01 - @o n. 0.50 and up Y 0.23 there is an apparent 
multicritical point in the phase diagram where the isotropionematic transition changes from 
a discontinuous (first-order) transition to a continuous transition. With further decrease in 
01 - @o this continuous alignment transition moves to higher concentrations and disappears 
for 01 - @o < 0.20. While this phase diagram may appear unusual, this type of phase 
behaviour is actually observed in the deoxygenated HhS system [49]. 

Finally, we consider the cases of intermediate 00 values, which join the strong and 
weak aggregation limits. This is best done by considering a 00 versus up phase diagram 
for fixed @ I  - 00 as shown in figure 4. The phase boundaries labelled ‘a’ in this figure. 
correspond to results shown in figure 3 for 01 - 00 = 0.4. For large values of @O (> 22) 
the system is in the strong aggregation regime and the phase behaviour is insensitive to 
changes in 00 as evidenced by the chimney-like coexistence region in this portion of the 
phase diagram. As 00 is decreased, the system enters an intermediate aggregation strength 
regime characterized by an extremely broad isotropic-nematic (and a limited nematic- 
nematic) coexistence region. With further decrease in 00 (<13) the minimum aggregate 
becomes less stable, the CMC moves to higher volume fraction, and the isotropionematic 
two-phase region narrows rapidly, becoming vanishingly small at the apparent multicritical 
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Figure 4. Phase boundaries for the no = 64 micellar 
rod-like system with the addition of a repulsive step 
potential. This diagram is for a fixed value of @I - @o 
= 0.4. The pairs of full curves identify the coexisting 
isompic (I) and nemalic (N) phases for a first-order I-N 
transition while the broken curvesidentifyanapparently 
second-order I-N transition (a )  Hard-core repulsions 
only as in figure 3 pn2J = 0. c/o = 0. ( b )  Short- 
range soli repulsions (e.g. elasfic interactions): Bo2J = 
0.1. c/a = 0.05. (c) Longer-range soft repulsions (e.g. 
elecuostatic repulsions): Bo'J = 0.1, c/u = 1.0. 
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Flgure 5. ( U )  Phase diagram for the no = 64 general 
micellar system and ( b )  associared average aggregate 
anisotropies. (l- /w) (. . . . . .), (l,,,w/u') (--- -) and 
( fmax/ lmid)  (-1. These results are for the case when 
rod and plare gmwih are equally favoured. In (a)  
the tie lines connect coexisting phases and full curves 
separating pure phases indicale a veu  m o w  &I- 
order coexistence region. In (b) the symbols locate 
he isouoopi-ial nematic transition (0) and axial 
nematic-planar nematic phase boundaries (W). 

point. This is the weak aggregation regime. 
The aggregate size distribution in many micellar systems is not limited to rod-like 

aggregates but may include disc-like or generally biaxial aggregates. The above model is 
easily extended to describe such polymorphic systems L45.501. In our lattice description of 
this more general micellar system we consider the possibility of biaxial plate-like aggregates, 
in addition to monomers, minimum aggregates and uniaxial rod-like aggregates. These 
biaxial particles are modelled as rectangular parallelepipeds of dimensions wa x Ila x lza 
(see figure I(a)) .  In our above treatment of systems of uniaxial particles, the aggregation 
number n was sufficient to determine the geometry of a given aggregate. This is not 
the case for a system of biaxial aggregates and thus a more detailed aggregate size and 
orientation distribution function is required. For this purpose we define ct~ , ,~  as the number 
concentration of asymmetric aggregates with edge lengths wa, [la and l20. oriented along 
lattice directions i, i + 1 and i + 2 respectively, where we employ the cyclic indexing 
convention i + 3 = i and require that 11 > w and /2 2 w.  In this general micellar system 
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we consider monomers and minimum aggregates to be spherically symmetric objects, for 
which we introduce the orientation-independent number densities CI and c,,, respectively, 
where, as above, no = w3 is the minimum aggregation number. Thus the complete size 
and orientation distribution of this polydisperse and polymorphic system is specified by 
the set of number densities c, = [cl, cno. cij,,2), where the label 'I' refers to each distinct 
type (i.e. size and orientation) of palticle. The Helmholtz free-energy density describing 
this system is given by equation (4.2) (here as a functional of ct) with the lattice excess 
configurational contribution given by equation (4.3) and the ideal mixing and aggregate 
association contributions given as follows: 

M P Taylor and J Herzfeld 

11 

+ (h  - w)]% i w[(h - w)(h  - w)]%}.  

(4.4) 

(4.5) 

The resulting equilibrium size and orientation distribution is given by an appropriately 
generalized version of equation (3.5). 

This general micellar system displays a wide variety of phase behaviour depending upon 
the choice of the three aggregation free energies, 00, @ I  and 0 2  [50]. One of the most 
interesting cases is that of 'equally favoured rod and plate growth', i.e. @2 = @I. Under 
this condition purely steric and mixing considerations drive the system into either a rod-like 
or a plate-like state. The @I -@o versus up phase diagram for the 0 2  = @ I  case is shown in 
figure 5(a). This diagram is computed for Qo = 24.0, no = 64 and 6 = 1/10. For small values 
of 01 - ' 4 0  (~0.17) no liquid-crystal phases are formed. In the range O.I7< 01 - 00 c 
0.32 there is a first-order transition from an isotropic phase to a nematic phase of planar 
symmetry. As this transition moves from high to intermediate concentrations, the initially 
very narrow coexistence region suddenly becomes quite broad. For @ I  - @O > 0.32 an 
axial nematic phase intervenes between the isotropic and the planar nematic phases. The 
first-order isotropic to axial nematic transition is via a very narrow coexistence region, while 
the subsequent first-order axial nematic to planar nematic transition is via a much broader 
two-phase region. 

Details of the average aggFegate dimensions for the case 01 - $0 = 0.36 are shown in 
figure 5(h). In this figure l,,, and fmid are defined as the maximum and middle aggregate 
dimensions, where lmax > [mid > w, w being the minimum aggregate dimension. In the 
isotropic phase (lmai) and (!mid) both increase monotonically and their relative values and 
rates of increase indicate that the system is initially composed of, on average, rod-like 
aggregates. The ratio (lmar/Lmid) also initially grows but at up Y 0.05 this quantity begins a 
slight decline, indicating that the aggregates are becoming, on average, slightly more plate- 
like. This trend is abruptly intempted at the isotropic-axial nematic transition where (Im) 
and (lm&,/lmid) both begin a rapid increase with increasing concentration while (!,,,id) remains 
essentially constant. Through the axial-planar nematic transition the system undergoes a 
dramatic morphological reconstruction as the rod-like aggregates in the axial nematic phase 
change over to plate-like aggregates in the planar nematic phase. With furfher increase in 
concentration, both ( I w )  and increase monotonically while (Imw/lmv) remains fairly 
constant. These results demonstrate an essentially excluded-volume-driven transition of a 
rod-like system to a plate-like system. We note that, in terms of the symmetries of the 
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FIgure 6. Osmotic pressure il versus concenfra- 
tion C H ~  for solutions of deoxygenated sickle-cell 
haemoglobin. Symbols: experimentd data for HbA 
(+) and for HbS at 37 "C (0) and 30 *C (x)  [49]. 
Conesponding model results are given by the full and 
dotted curves. The mults shown in (a)  and (b) are 
for different suengtb of the soft repulsive potential. 
In (U), where the repulsions are stronger, there is a 
vely narrow biphasic region i n d i d  by the diamonds 
(+). In (b). where the repulsions are weaker. ulere is 
a bmader biphasic region indicated by the pressure tie 
lines (+----+). 

S 
Figure 7. Temary phase diagram for aqueous (W) 
solutions of mixtures of sickle-cell haemoglobin ( S )  
with a hypothetical haemoglobin (X) Ihat does not 
hybridize or -gate. ne lines mnnen coexisting 
isotropic (I) and nematic (N) phase. Poinfs represent 
sedimentation daIa for pure HbS (*) and mixtures of 
HbS with HbA (U). HbAZ (A) and HbF (0) under 
non-hybridizing conditions [661. The stippled region 
was numerically infractable. 

aligned phases, the phase diagram of figure 5(a)  is remarkably similar to the temperature- 
concentration phase diagram observed for many micellar surfactant systems. However, 
in these systems axial and planar orientational ordering are generally accompanied by 
hexagonal and lamellar translational ordering, respectively [3840]. In section 5 of this 
review we take up the problem of translational order in reversibly self-assembling systems. 

Thus far we have considered purely hard-core interaggregate interactions. Although 
this is a reasonable first approximation, for the types of association colloid systems we are 
considering, a more realistic interparticle potential would include a short-range soft repulsive 
component arising from elastic hydration or screened electrostatic forces. Hentschke and 
Henfeld have introduced an additional soft repulsive step of width 6 and height J ,  where 
J has units of interaction energy per overlap area. (Note that a sum of such steps can 
be used to model any potential to the desired degree of detail.) A simple combinatorics 
analysis leads to the following expression for the self-repulsive free energy density of a 
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self-assembled system on a lattice 

M P Taylor and J Herzfeld 

Inclusion of this soft repulsive potential into the model calculation (i.e. fexes’ = fanfig + 
fWR in equation (4.1)) can have significant effects on the resulting phase behaviour as seen 
in figure 4. In this figure, the phase boundaries labelled ‘a‘ correspond to the sbictly hard- 
core model @aZJ = 0) for the rod-like micellar system, with @! - @o = 0.40, no = 64 and 
6 = 1/50, considered previously. The phase boundaries labelled ‘b’ and ‘c’ are the results 
obtained for the same system with the addition of a soft repulsive potential to the hard-core 
interactions. The strength of the repulsive potential is taken as @or’ J = 0.1 and the range as 
5a = 0.05 and $a = 1.0 for phase boundaries ‘b’ and ‘c’ respectively. The primary effect 
of the soft repulsive interactions is to increase the osmotic pressure of the aggregates in 
the aligned hematic phase over the bare hard-core pressure. A magnification of this effect 
is seen in the phase diagram as the dramatic narrowing of the isotropic-nematic two-phase 
coexistence region in the strong and intermediate aggregation regimes. The soft repulsions 
have minimal effects on the phase diagram in the weak aggregation regime, as the nature 
and position of the multicritical point are essentially unaltered. 

Finally, the validity of the discrete orientation approximation, inherent in the lattice 
model used above, has been investigated by Hentschke and Henfeld for self-assembling 
systems [52]. These authors have derived a continuum expression for the configurational 
free energy that is a generalization of the lattice result given in equation (4.3). In the dilute 
limit this free-energy expression reproduces the second vinal result given in equation (4.2). 
The phase diagrams computed from this full continuum model for the rod-like micellar 
system are qualitatively similar to the lattice-model phase diagrams presented here. Perhaps 
more importantly, the apparent multicritical point observed in the weak aggregation regime 
is still found in the continuum solution. In the following we continue to use the discrete 
orientation approximation [53], although we now dispense with the lattice model and tum 
to the much more accurate scaled particle treatment for the configurational free energy. 

4 3 .  Scaled particle rheory 

Although the above lattice models go beyond the second vinal approximation, they still 
significantly underestimate the effects of excluded volume at high packing densities. In 
order to make quantitative comparisons with experimental data for concentrated solutions, 
a more accurate theory is required. Scaled particle theory provides one approach that is 
particularly successhl and simple to apply. Originally developed for the hard-sphere fluid 
by Reiss er al [24], the method has been successfully applied to the hard-rod fluid by Cotter 
and coworkers 125.541 and to a harddisc fluid by Savithramma and Madhusudana [ S I .  

The scaled particle approach can be summarized quite succinctly. The quantity of 
interest is the work required to insert a test particle, whose dimensions are adjusted by a 
variable scaling parameter, into the hard-particle fluid. This work function can be computed 
exactly in the two extreme limits of an infinitesimally small and a macroscopically large 
scaled test particle. In the former limit, where threebody and higher interactions can 
be neglected, the work function is given rigorously by a second vinal treatment, while 
in the latter limit, the work function is given directly in terms of the hydrostatic pressure 
resisting the formation of a macroscopic cavity in the fluid. By constructing an interpolation 
between these two limiting cases. the complete thermodynamics of the hard-particle fluid 
can be derived. 



Liquid-crystal phases of selfassembled molecular aggregates 2667 

For the hard-sphere fluid a single scaling parameter is used to adjust the diameter of 
the scaled particle. The resulting equation of state is very accurate, being identical to the 
Percus-Yevick compressibility result For hard spherccylinders, Cotter's version of scaled 
particle theory uses two scaling parameters as both the particle diameter D and length L 
are scaled independently. In this case, the results for spherocylinders compare well with the 
Monte Carlo equation of state [56] and with experimental osmotic pressure data for solutions 
of rcd-like polymers (with persistent flexibility taken into account as necessary for the 
longer polymers) [57,58]. Application of scaled particle theory to self-assembling systems 
requires adaptation for a polydisperse collection of particles. The appropriate expressions 
have been obtained by Cotter and Wacker [54] for polydisperse spherccylinders, by Taylor 
and Herzfeld 1591 for polydisperse right cylindrical discs, and by Taylor [60] for polydisperse 
spheroplatelets. 

Substitution of the scaled particle expressions for f""@ in equation (4.1) for self- 
assembling systems leads to a startling result: the full expression of the excluded volume 
at high packing densities drives essentially complete aggregation into a very small number 
of very long, highly aligned particles. With just a bare hard-core interparticle potential, 
this dramatic drop in the particle number concentration results in a concomitant collapse 
of the osmotic pressure. Thus the bare hard-core interparticle potential, when treated as 
completely as possible, predicts unrealistic behaviour for self-assembling particles. Clearly 
a more realistic potential is required for these systems and the most obvious requirement 
for lyotropic systems is a soft repulsive interaction. It is striking that simply including 
a weak f soft contribution to the free energy of the form of equation (4.6) produces well 
behaved results, even when the excluded volume is treated by scaled particle theory. As 
noted earlier, a sum of such step potentials can be used to mimic a soft potential of any 
desired form. 

The most comprehensive equation-of-state data for self-assembling systems at high 
concentrations are the osmotic pressure data for deoxygenated sickle-cell haemoglobin 
(HbS) due to h u t y  ef a! [49] (figure 6). Deoxygenated sickle-cell haemoglobin reversibly 
aggregates at physiological concentration and temperature (-35 g d-', 37 "C) into helical 
fibres, most commonly composed of Seven double strands of monomers with interstitial 
water [611. Since the interstitial water must be in equilibrium with the bulk water, the degree 
of hydration of the aggregates must be allowed to vary with the osmotic pressure. This 
requires a free energy of contact formation that depends on the degree of fibre hydration. 
For the data available, a simple linear dependence of @ I  and @o on hydration suffices 
[62]. Approximating the shapes of the monomers as cubes of width equal to the monomer 
diameter, the minimum aggregates as cubes of width equal to the aggregate diameter, 
and the larger aggregates as rectangular parallelepipeds with the same cross section, the 
predicted equation of state, using scaled particle theory to account for the hard-core excluded 
volume and a mean-field tmtment to account for the soft interactions, agrees well with the 
experimental data through the entire concentration range, for appropriately chosen values 
of the model parameters 1631. 

The theoretical calculations provide interpretations for the interesting features of the HbS 
osmotic pressure curves (figure 6). At low to moderate concentrations, HbS is monomeric 
like normal adult haemoglobin (HbA) and shows the same osmotic pressure. The non- 
ideality of such monomeric haemoglobin solutions was previously accounted for by a scaled 
particle treatment of the excluded volume of the monomers [a]. At higher concentrations, 
the osmotic pressure curves for deoxy sickle-cell haemoglobin deviate sharply from the 
normal haemoglobin curve. This sudden reduction in the osmotic pressure is due to the 
cooperativity of assembly when @o is less than @!. After the onset of aggregation, the 
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osmotic pressure remains approximately constant over a range of concentrations. This 
suggests the coexistence of two phases. However, the calculations show that the range of 
isotropionematic coexistence will be very narrow unless soft repulsions are weak ( (a)  versus 
(b) of figure 6). The extension of the osmotic pressure plateau beyond the range of isotropic- 
nematic coexistence is due to the opposing effects of aggregate growth, tending to reduce 
the osmotic pressure, and soft repulsions. tending to increase the osmotic pressure. The 
disappearance of the osmotic pressure plateau for weak aggregation (at lower temperatures 
not shown here) corresponds to a multicritical point at which the isotropic-nematic transition 
is predicted to become second-order due to the interplay between aggregate growth and 
alignment 147,521. Beyond the osmotic pressure plateau, the rise in the osmotic pressure 
is nearly linear with concentration. This anomalously low-order dependence on packing 
density indicates that the hard-core volume of the particles is shrinking due to fibre 
dehydration at high osmotic pressures. The theoretical fit to the data suggests that the 
fibre width quoted in the literature represents a relatively dehydrated fibre and that fibres in 
solution may be swollen by as much as 506 in diameter. 

In the red blood cell, HbS does not always occur as a pure solution. Although for 
homozygous individuals the in vivo solution is nearly pure HbS, in heterozygous individuals, 
or individuals with persistent expression of foetal haemoglobin (HbF), HbS is mixed with 
haemoglobins that do not aggregate as readily. The hypothetical case in which the non-sickle 
haemoglobin (HbX) does not hybridize with the sickle haemoglobin and does not participate 
in aggregation is relatively easy to model [65]. Figure 7 shows the phase diagram calculated 
for such a ternary system using the same parameters used to fit the osmotic pressure data of 
pure HbS solutions in figure 6(a). The apex of the triangle corresponds to pure solvent. A 
straight line from the apex to the bonom corresponds to a haemoglobin solution of increasing 
concentration with a fixed HbS:HbX ratio. Along the left leg of the triangle, corresponding 
to a binary system of solvent and pure HbS, an isotropic solution consisting essentially 
entirely of monomers exists at low concentrations and a nematic solution consisting of long, 
aligned fibres exists at higher concentrations. Coexistence of the isotropic and nematic 
phases is restricted to a narrow range of conditions in the binarj system. As HbXHbS 
increases (i.e. the line from the apex swings away from the left leg towards the right leg), 
the isotropic phase is predicted to persist to higher concentrations, in good agreement with 
the experimental data for a variety of non-sickle haemoglobins [66]. However, over a wide 
range of higher concentrations, a dramatic demixing is predicted whereby an exceedingly 
concentrated nematic solution of aggregated HbS separates from the isompic solution. This 
wide two-phase region is the result of excluded volume: the enbopic cost of demixing is 
less than the entropic cost of packing quasi-spherical HbX molecules among rod-like HbS 
fibres. In real haemoglobin mixtures, the free-energy cost of incorporating the non-sickle 
haemoglobin in the HbS fibre may be less than either of the above. 

M P Taylor and J Herzfeld 

5. Translational ordering in simple self-assembling systems 

In the previous section we have focused exclusively on orientational ordering in self- 
assembling systems and have ignored the possibility of translationally ordered phases. This 
is in fact a serious shortcoming since, for most self-assembled systems, translationally 
ordered liquid-crystalline phases are more common than nematic phases [38-40]. In this 
section we return to the simplest self-assembling systems but now consider the possibility of 
translational order. We address the two cases of simple rod-like and disc-like aggregation. 
The phase behaviour of these two systems is found to be very similar. In each case, we 
compare our theoretical predictions to experimental results. 
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S.1. A model rod-like system 1S9,671 

The linearly aggregating rod-like system is modelled as a set of reversibly assembled 
polydisperse spherocylindrical rods. The basic aggregating unit is a spherical monomer 
of diameter a (monomer volume bl = $a3), n of which can self-assemble to form a 
spherocylindrical n-mer of the same diameter a and cylinder length I,, = $(n- 1)a (i.e. n-mer 
volume bn = nhj) (see figure I@)). The system is described by the uniaxial aggregate size 
and orientation distribution function c,(a) .  The ideal mixing and the aggregate association 
free-energy densities are given by equations (3.3) and (3.4). respectively, where -@ksT 
is the association free energy per monomer-monomer contact within an aggregate. The 
inter-aggregate interaction is taken as a hard-core repulsion plus a short-range soft repulsive 
step. The contribution to the total free energy arising from the soft repulsions is determined 
using a first-order perturbation theory [68] and the resulting expression is similar to the 
lattice result given in equation (4.6). 
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Flgure 8. Phase diagram for the self-assembling md-like 
system of section 5.1 calculated y ing  model parameteis 
given in the texL The tie lines mnnect Mexisting phases 
while the v h c a l  broken line indicates the hard-rod close- 
packing limiL The decreasing @ scale on the ordinate of 
h i s  diagram a n  be interpreted as an increasing temperature 
scale. 

As in the previous section we consider the possibility that an orientationally ordered 
nematic phase will be stable in this system. Additionally, we now consider the possibility 
that a translationally ordered columnar phase will also be stable. Smectic ordering, 
however, is not considered as we assume that such ordering will be suppressed due to 
aggregate polydispersity [69,70]. Finally, we consider the possibility of a high-concentration 
monodisperse crystal phase, which may be stable in the limit of very weak aggregation 
(i.e. small @). The hard-core configurational free energy for the isotropic and nematic 
phases is computed using scaled particle theory as developed by Cotter and Wacker for 
a polydisperse population of spherocylindrical rods [54]. For the translationally ordered 
phases, the configurational free energy is conshucted by generalizing the cell model 
presented in section 2.2. Thus we express the configurational free energy for the polydisperse 
columnar phase as the sum of a one-dimensional fluid contribution and a two-dimensional 
cell contribution. These two free-energy contributions are coupled through their mutual 
dependence on the column width Ac in the columnar phase. The one-dimensional fluid 
configurational free energy is computed using one-dimensional scaled particle theory (which 
yields the exact result) [24], while the cell configurational entropy is given by the ratio 
of the two-dimensional particle free volume to the two-dimensional cell volume. The 
configurational free energy of the monodisperse crystalline phase is computed using a three 
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dimensional self-consistent free-volume cell model 1281. The complete expressions for the 
hard-core freeenergy density for these four phases (isotropic, nematic, columnar. crystal) 
are given in [59]. We solve this model in the discrete orientation approximation discussed 
in the previous section. 

The predicted liquidcrystalline behaviour of the self-assembling rod-like system is 
shown in the 4 versus up phase diagram of figure 8. The model parameters used in 
calculating this phase diagram are a monomer diameter of a = 12 A and mass of ml 
= IO00 amu, with a repulsive step potential of height PaJ = 1.0 and width t / a  = 0.1. 
We note that the main qualitative features of figure 8 are not particularly sensitive to the 
choice of these parameters. The free energy of association 4 is assumed to increase linearly 
with T-', corresponding to a negative enthalpy of aggregation. Thus figure 8 represents a 
temperature-concentration phase diagram. 

The phase behaviour of figure 8 can be summarized as follows. There is a low- 
concentration isotropic phase whose region of stability grows with increasing temperature 
(weaker aggregation). A nematic phase is found to be stable at low temperatures in the 
concentration range 1&50%. With increasing temperature the n m w  isotropic-nematic 
coexistence region moves to higher concentration until the nematic disappears at the 
isotropic-nematic-columnar triple point (up = 0.425, 4 = 19.0). At a concentration of 
-50% there is a low-temperature nematiocolumnar transition via a narrow biphasic region 
and a high-temperature isotropiocolumnar transition via a broad biphasic region. For 
most of the phase diagram the columnar phase is found to be stable out to close packing 
(up - 0.9). However, when aggregation is very weak (i.e. small 4 or high temperature), 
the columnar phase becomes unstable with respect lo a crystalline phase of monodisperse 
spheres or slightly anisotropic spherocylinders. 

In addition to the macroscopic phase behaviour, our calculation also yields detailed 
information on the microscopic state of the self-assembled system. This includes average 
aggregate size, orientational order parameter and the intercolumn spacing in the columnar 
phase. As expected. the average aggregate size increases monotonically with increasing 
concentration as well as with decreasing temperature. The average aggregate axial ratio 
(&,/a) Y $(n) at the isotropic-nematic transition is roughly given by l/$, where U; is the 
volume fraction of the coexisting isotropic phase. In the columnar phase, the inter-column 
spacing is in the range 1.0 < Ac/a < 1.2 and is found to decrease with both increasing 
temperature and increasing concenhation. 
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5.2. The TP6EOZMlwater and related systems 

A number of recent experimental investigations have been concemed with liquid-crystalline 
ordering in linearly aggregating self-association systems [4,5,71-731. Much of this 
work is due to Boden and collaborators, who have studied both rod-like and disc-lie 
systems. An ideal realization of a lyotropic self-assembling rod-like system is provided by 
the water soluble amphiphilic molecule 2,3,6,7,10,1 I-hexa-(l,4,7-trioxaoctyl)triphenylene 
(TP6EO2M). first synthesized by Boden ef a1 [41. The TP6E02M molecule consists of a 
hydrophobic polyaromatic tiphenylene core to which are attached six non-ionic hydrophilic 
ethyleneoxy side chains (molecular weight 936 amu, volume -1500 A3, core diameter 
-12 A, maximum diameter -23 A). In aqueous solution, the molecules stack reversibly 
to sequester the triphenylene cores from the water environment By design the TP6E02M 
molecule is geometrically constrained to form only these rod-like aggregates. 

The phase diagram of this system, determined from optical microscopy and deuterium 
NMR studies, is shown in figure 9. This experimental phase diagram is quite similar to the 
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Fwre 9. Experimental phase diagram for the rod-like self-assembling TPEOZWwater system. 
The concenuation scale is in unils of amphiphile weight fraction, which, for this syslem, is 
roughly equivalent LO solute volume tiaction up Phases are identified as I for isotropic, 
for rod-like nematic and CH for hexagonal columnar. Also identified is the isotmpionematic- 
columnar triple point Tp(lNC). The lie lines COMeCt coexisting phases. (Reproduced with 
permission from Boden el nl 1986 Chem. Phys. Len. 123 359 [41.) 

model phase diagram of figure 8. In particular, both phase diagrams display an isotropic, 
nematic, columnar phase sequence at low temperatures. With increasing temperature the 
region of nematic stability narrows and finally terminates at an isotropic-nematic-columnar 
triple point. Above the triple point there is a direct first-order isotropiocolumnar transition. 
In the experimental phase diagram (figure 9) the triple point occurs at a TP6E02M weight 
fraction of 51% (up N OS), while in the theoretical phase diagram (figure 8) the triple point 
is located at volume fraction of up N 0.425. 

In addition to the phase diagram, other experimental results are available for the 
TP6EOZWwater system. X-ray diffraction measurements have been carried out on such a 
system with a TP6E02M weight fraction of 40% (U, N 0.4) in the isotropic, nematic and 
columnar phases. From these data average aggregation numbers are estimated (assuming a 
monodisperse aggregate size distribution) of (n) N 6.5 and (n) Y 7.8 in the isompic and 
nematic phases respectively. These values are comparable with our model results where (n) 
varies from -3 to IO at the isotropic-nematic transition in the neighbourhood of the triple 
point. The reduced aggregate number density, p* = cP(ln)*a, at this isotropionematic 
transition is found to be p* Y 0.3, which is near our calculated value of p' N 0.4 in 
the vicinity of the figure 8 triple point. Finally, the experimentally measured columnar 
(hexagonal) spacing is Ac Y 31 A, which, combined with the estimates of monomer 
diameter, gives a relative columnar spacing in the range 1.3 < A,/a < 26. In our model 
calculations the columnar spacing is found to be in the range 1.0 6 AJa 6 1.2. 

While the TP6E02Wwater system is perhaps the best-studied linearly aggregating 
rod-like lyotropic system, phase diagrams for at least two other systems of this type 
have been determined. These are the disodium chromoglycate/water system studied 
by Hanshome and Woodard [71] and others [5,72] and aqueous solutions of the 
tetrabenzocyclododecatetraene molecule substituted with eight methoxydiethylene oxide 
side chains studied by Zimmermann ef al [73]. In both of these systems the planar 
amphiphilic molecules reversibly assemble by stacking to form linear rod-like aggregates. 
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The phase diagrams for these systems have the same general topology seen in figures 8 
and 9 including the low-temperature isotropic, nematic, columnar phase sequence and 
the distinctive isotropionematiocolumnar triple point. Finally, recalling that the linear 
aggregation model is applicable to rod-like micellar systems in the strong aggregation limit, 
our results suggest that the hexagonal phase formed by such systems comprises finite, as 
opposed to ‘infinite’, aggregates. Amaral er al have recently shown this to be true in the 
micellar sodium dodecyl lauryl sulphatdwater system [74]. 

53. A model disc-like system [S9] 
We now turn to a simple disc-like system modelled as a set of reversibly assembled 
polydisperse right cylindrical discs. The basic aggregating unit is a symmetric right cylinder 
with height and diameter a (monomer volume b, = $ru’), n of which can self-assemble to 
form a right cylindrical disc-like n-aggregate of height a and cylinder diameter d.  = 
(i.e. n-aggregate volume bn = n b l )  (see figure I@)). This system can be described using a 
simple uniaxial aggregate orientation and size distribution function c,(Q). The ideal mixing 
and the aggregate association free-energy densities are given by equations (3.3) and (3.4). 
respectively. In using the association free energy of equation (3.4) we are implicitly ignoring 
edge effects [29,32]. As with the rod-like system, the inter-aggregate interaction is taken 
as a hard-core repulsion plus a short-range soft repulsive step, with the latter treated as a 
first-order perturbation [68]. 

For this disc-like system we consider the possibility of a disordered isompic phase, 
an orientationally ordered nematic phase and a translationally ordered smectic (lamellar) 
phase. We assume that columnar ordering will be suppressed by the disc polydispersity 
1691, although in the limit of very weak aggregation we do consider the possibility of a 
monodisperse columnar phase. The hard-core configurational free energy for the isotropic 
and nematic phases is computed using scaled particle theory applied to a system of 
polydisperse discs. This calculation is a generalization of Savithramma and Madhusudanas’ 
treatment of monodisperse right cylinders [SI. The configurational free energy for the 
translationally ordered phases is constructed using a generalization of the cell model 
discussed in section 2 . 2  Thus, to describe the smectic phase., we consider a two-dimensional 
fluid of polydisperse circles representing discs confined within the one-dimensional cell 
corresponding to the thickness of a smectic layer. The two-dimensional fluid density and 
the one-dimensional cell entropy are coupled through their mutual dependence on the smectic 
layer spacing A,. The two-dimensional fluid configurational free energy is computed using 
two-dimensional scaled particle theory [24], while the onedimensional cell configurational 
entropy is given by the ratio (As - a ) / A , .  The monodisperse columnar phase is treated in a 
manner analogous to the columnar phase of polydisperse rods described in section 5.1. The 
complete expressions for the hard-core configurational free-energy density for these four 
phases are given in 1591. As for the rod-like system, this disc-like model is solved in the 
discrete orientation approximation. 

The phase diagram of the self-assembling disc-like system is shown, as a function of 
@ and up, in figure IO. The model parameters used in calculating figure 10 an a monomer 
diameter of a = 9 A and mass of ml = 500 amu, with a repulsive step potential of height 
Ba2J = 0.2 and width f / a  = 0.1. As for the rod-like phase diagram of figure 8, the 
qualitative features of figure 10 are not particularly sensitive to the choice of these model 
parameters. Assuming @ increases linearly with T-’ (corresponding to a negative enthalpy 
of aggregation), figure 10 can be interpreted as a temperature-concentration phase diagram. 

The phase behaviour of the self-assembling disc-like system (figure 10) is quite similar 
to that of the self-assembling rod-like system (figure 8). Again there is a low-concentration 
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isotropic phase, whose range of stability grows with increasing temperamre, and a high- 
concentration translationally ordered phase. In the case of self-assembled discs, the 
translationally ordered phase is smectic. Intervening between the isotropic and smectic 
phases at low-temperature is a nematic phase of polydisperse discs. With increasing 
temperature, the range of nematic stability narrows until it completely disappears at the 
isotropic-nematic-smectic triple point (up - 0.35, & - 22.0). For most of the temperature 
range of figure IO the smectic phase is stable out to close packing (up - 0.9). However, 
at the highest temperatures, when aggregation is very weak, the smectic phase is replaced 
by a columnar phase of symmetric or slightly asymmetric monodisperse discs. (Note that a 
crystal of orientationally ordered right cylinders is never stable p6.271.) 

In addition to the bulk phase diagram, we have computed, among other things, average 
aggregation numbers, orientational order parameters and the smectic layer spacing for this 
disc-like system. As in the case of the rod-like system, the disc-like aggregates grow with 
increasing concentration and decreasing temperature. Also, as for the rcd-like system, the 
average aggregate axial ratio (d,/a) at the isotropionematic transition is approximately 
given by Vu;. The smectic layer spacing is found to be independent of temperature (i.e. 
independent of 4) and is'in the range 1.0 < A./a 6 1.2, decreasing with increasing 
concentration. 
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5.4. The CsPFOlwater and related systems 

As a model self-assembling disc-like lyotropic system, Boden’s group has made an extensive 
study of the caesium perfluoro-octanoate (CsPFO)/water system [7]. The CsPFO molecule 
consists of a hydrophobic fluorocarbon chain attached to a hydrophilic caesium-carboxyl 
head-group (molecular weight 436 mu, volume -360 AS, maximum dimension -12.4 A). 
The rigidity of the fluorocarbon chain, combined with the low hydration energy of the 
caesium head-group, causes this molecule to favour an aggregate geometry of minimal 
surface curvature, and in aqueous solution it forms discrete discoidal aggregates in all 
phases including the smectic. 

A portion of the CsPFO/water phase diagram is shown in figure 1 1. The topology of this 
experimental phase diagram is quite similar to the theoretical disc-like phase diagram shown 
in figure 10. Most notably there is a low-temperature nematic phase intervening between a 
low-concentration isotropic phase and a high-concentration smectic phase. Wcth increasing 
temperature the nematic region narrows and eventually disappears at an isotropienematie 
smectic triple point, above which there is a direct isotropic-smectic transition. At the triple 
point, the isotropic, nematic and smectic phases coexist at volume fractions U; = 0.425, 
vN P = 0.431 and U: = 0.448, respectively, as compared with the calculated triple point in 
figure 9 at U; = 0.28, U: = 0.36 and U; = 0.55. One interesting feature of the experimental 
phase diagram not found in our calculation is a nematiosmectic hicritical point where the 
nemati-mectic transition changes from first to second order with decreasing temperature. 
This omission is not surprising, however. since our somewhat crude cell description of 
the smectic phase precludes the possibility of a continuous transition from the nematic. 
However, we do find that the calculated nematiosmectic transition becomes more weakly 
first-order with decreasing temperature (increasing q5). 

In addition to mapping out the phase diagram, the Boden group has carried out 
numerous other studies of the CsPFO/water system. These include x-ray diffraction and N m  
quadrupolar splitting experiments at a number of temperatures and CsFFO concentrations. 
The x-ray diffraction studies indicate that CsPFO aggregates grow monotonically with 
decreasing temperature and increasing concentration. Typical discoid anisotropies in the 
nematic and smectic phases range from 1.8 to 4.3t Our theoretical results are in accord 
with this observed behaviour. In these x-ray studies, the reduced aggregate number 
density pa = cP(dJ3 along the nematic-isotropic transition line is found to increase with 
temperature from 1.0 to 1.7. Our calculated values of p’ are in the range 1.3 to 1.8 along 
this transition line but they decrease with ‘temperature’. 

Estimates have also been made of the orientational order parameter S for the 
CsPFO/water system using both x-ray diffraction and Nhm quadrupolar splitting data. The 
x-ray diffraction data for a CsPFO weight fraction of 55% (up = 0.35) give values of S = 0.7 
at the nematioisotropic transition and S = 0.9 at the nematic-columnar transition. The NMR 
quadrupole splitting data taken along the nematioisotropic transition line indicate that S at 
the transition decreases with decreasing transition volume fraction. Both the large increase 
in S through the nematic phase at constant density (which is due to a growth-alignment 
coupling) and the decrease in S along the nematic phase boundary with decreasing bansition 
volume fraction are seen in our model results. 

Finally, a smectic (lamellar) layer spacing for the CsPFO/water system of As N 42 A 
has been reported at up = 0.35 independent of temperature. Assuming a CsPFO aggregate 
thickness of a = 22 A, this gives a scaled smectic layer spacing of A./a Y 1.9, which is 

t Photinos and Saup [751 have questioned h e  result$ however. see Boden and Joky [76]. 
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consistent with our theoretical construction of the smectic phase (which requires A s / a  < 
2.0) but is larger than our calculated smectic stability limit of Asia < 1.2. 

Boden’s group has also made a detailed study of the ammonium PFO/water system 
[SI and find similar behaviour to the CsPFO/water system including a phase diagram 
nearly identical to figure 11 .  In addition to these two model systems, there are several 
other disc-forming lyotropics for which phase diagrams have been determined. These 
include aqueous solutions of the rigid-rod surfactant, caesium penluoro-nonanoate [77], 
and a non-ionic amphiphile synthesized by Luhmann and Finkelmann [78], which consists 
of a flexible hydrophilic polyoxyethylene chain attached to a rigid hydrophobic biphenyl 
moiety. The phase diagrams for these two systems have the same general features seen 
in figures IO and 11, including the low-temperature isotropic, nematic, smectic phase 
sequence and the characteristic isotropionematic-smectic triple point Additionally, Herbst 
et al have established a partial phase diagram and carried out structural measurements for 
the tetramethylammonium perfluom-nonanoate/water system [9]. They find the same low- 
temperature isotropic, nematic, smectic phase sequence and have determined that small 
disc-like aggregates comprise all three of these phases. 

6. Conclusions 

We have seen that the varying symmetries of the liquid-aystal phases of self-assembled 
molecular aggregates can be explained by the effects of excluded volume, modulated by soft 
repulsions. A phenomenological description of assembly, combined with a scaled particle 
treatment of excluded volume and a mean-field treatment of soft repulsions, suffices to 
obtain agreement with experimental data in cases ranging from surfactants to proteins, to 
polyammatic amphiphiles. The extension to temary and higher-order systems appears to be 
particularly promising. 

However, there remain a number of outstanding issues that have yet to receive an 
adequate theoretical treatment. Among these, aggregate flexibility is perhaps the most 
important. In the case of monodisperse rods, flexibility can have dramatic effects on liquid- 
crystalline phase behaviour [79,80]. In particular, very flexible hard rods do not form a 
nematic phase; rather they undergo a direct isotropic-columnar transition. In most micellar 
surfactant systems and for thin protein fibres, such as microfilaments, the persistence length 
of the aggregates is short compared to the length of the aggregates. In such cases, a rigid, 
hard-particle reference system does not adequately describe the configumional entropy of 
the aggregates. odijk 1811 and Hentschke I821 have partially addressed this problem for 
the case of linearly self-assembling aggregates that are constrained to be monodisperse. 
However, this work has yet to be extended to take polydispersity or non-linear assembly 
into account. 

Another potentially problematic case is that of ionizable molecules far from their 
isoelectric pH [Z, 3,831. If the ionic strength is not sufficiently high, the unscreened Coulomb 
interactions between charged aggregates may be strong enough that they cannot be treated 
in the mean-field approximation. However, the point may be irrelevant because unscreened 
Coulomb repulsions between charged monomers may prevent aggregate formation in the 
first place. In the case of proteins, unscreened Coulomb interactions within a monomer 
may cause unfolding (as seen in acid and base denaturation), in which case self-assembly 
is also moot. In any case, the present theory for liquidcrystalline phases of self-assembled 
molecular aggregates is best applied close to the isoelectric pH or at high ionic strengths. 
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These reservations aside, it is clear that we now have a substantial understanding of 
the microscopic basis for liquid-crystalline ordering in self-assembling systems. The pre- 
eminence of excluded-volume effects harks back to Onsager's work with monodisperse 
lyotropic systems over 40 years ago. The special features of the self-assembling systems 
are the extreme polydispersity of the labile particles and the coupling between the size 
distribution of the particles and the distributions of particle orientations and positions. These 
features are responsible for the rich phase behaviour that characterizes these systems. 
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